The Uncertainty Measure of Hierarchical Quotient Space Structure
نویسندگان
چکیده
In the application of fuzzy reasoning, researchers usually choose the membership function optionally in some degree. Even though the membership functions may be different for the same concept, they can generally get the same or approximate results. The robustness of the membership function optionally chosen has brought many researchers’ attention. At present, many researchers pay attention to the structural interpretation definition of a fuzzy concept, and find that a hierarchical quotient space structure may be a better tool than a fuzzy set for characterizing the essential of fuzzy concept in some degree. In this paper, first the uncertainty of a hierarchical quotient space structure is defined, the information entropy sequence of a hierarchical quotient space structure is proposed, the concept of isomorphism between two hierarchical quotient space structures is defined, and the sufficient condition of isomorphism between two hierarchical quotient space structures is discovered and proved also. Then, the relationships among information entropy sequence, hierarchical quotient space structure, fuzzy equivalence relation, and fuzzy similarity relation are analyzed. Finally, a fast method for constructing a hierarchical quotient space structure is presented.
منابع مشابه
Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملGeneralized Aggregate Uncertainty Measure 2 for Uncertainty Evaluation of a Dezert-Smarandache Theory based Localization Problem
In this paper, Generalized Aggregated Uncertainty measure 2 (GAU2), as a newuncertainty measure, is considered to evaluate uncertainty in a localization problem in which cameras’images are used. The theory that is applied to a hierarchical structure for a decision making to combinecameras’ images is Dezert-Smarandache theory. To evaluate decisions, an analysis of uncertainty isexecuted at every...
متن کاملHierarchical Group Compromise Ranking Methodology Based on Euclidean–Hausdorff Distance Measure Under Uncertainty: An Application to Facility Location Selection Problem
Proposing a hierarchical group compromise method can be regarded as a one of major multi-attributes decision-making tool that can be introduced to rank the possible alternatives among conflict criteria. Decision makers’ (DMs’) judgments are considered as imprecise or fuzzy in complex and hesitant situations. In the group decision making, an aggregation of DMs’ judgments and fuzzy group compromi...
متن کاملSome relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...
متن کاملSolving New Product Selection Problem by a New Hierarchical Group Decision-making Approach with Hesitant Fuzzy Setting
Selecting the most suitable alternative under uncertainty is considered as a critical decision-making problem that affects the success of organizations. In the selection process, there are a number of assessment criteria, considered by a group of decision makers, which often could be established in a multi-level hierarchy structure. The aim of this paper is to introduce a new hierarchical multi...
متن کامل